


Nouveau Monde commences trial graphite mining in Quebec

Nouveau Monde Graphite Inc. {TSX.V:NOU}

Announced the successful mechanical commissioning of the wet circuit of its 3.5 tons per hour demonstration plant located in Saint-Michel-des-Saints, Quebec.

In the next two years, a total of 40, 000 tonnes are planned to be collected and shipped to the demonstration plant.

SAINT-MICHEL-DES-SAINTS, QUEBEC, September 18th, 2018 – **Nouveau Monde Graphite Inc. {TSX.V:NOU}** is pleased to announce the successful mechanical commissioning of the wet circuit of its 3.5 tons per hour (tph) demonstration plant located in Saint-Michel-des-Saints, Quebec. An overview of the processing plant is depicted below.

The following videos can be viewed in support of reading the paragraphs below :

- [Demonstration plant from the outside](#)
- [Demonstration plant facilities \(part 1\)](#)
- [Demonstration plant facilities \(part 2\)](#)
- [Flotation process](#)

Mechanical commissioning of the flotation circuit up to the filter press was completed during the week of September 3rd. Commissioning of the dry side of the demonstration plant including dryer, classification screen, and bagging system is scheduled for later in September 2018.

Grab samples of the +80 mesh cleaning circuit 3rd cleaner concentrate were submitted for independent chemical analysis by SGS Minerals in Lakefield. The results are presented in Table 1 and reveal that the total carbon grades of the +50, +80, and +140 mesh size fractions are above the minimum concentrate grade target of 95% C(t). Given that these high concentrate grades were already obtained during mechanical commissioning is very encouraging and confirm the effortlessness that the medium, large and jumbo flakes of the Matawinie graphite ore can be upgraded to at least 96% C(t).

Table 1: Demonstration Plant Total Carbon Grades:

Size Fraction	Total Carbon Grade in %
---------------	-------------------------

+50 mesh	98.0
+80 mesh	96.7
+140 mesh	97.9

With mechanical commissioning of the wet circuit completed, the attention will focus on optimizing the metallurgical performance of the circuit in the coming weeks. During the next two years of operation, several alternative processing technologies will be evaluated to determine if the results obtained in the laboratory scale metallurgical program that was completed to support the feasibility study can be further improved.

The demonstration plant represents a significant scale-up from laboratory scale testing, which typically uses 2 kg test charges. Although two bulk sample were processed in flotation pilot plants rated at 1 tph at SGS Lakefield in 2015 and 2018, these plants were operated as concentration production campaigns and operating hours were insufficient to optimize the circuit conditions. The ability to operate the demonstration plant in Saint-Michel-des-Saints for the next two years provides a unique opportunity to fully optimize all aspects of the process and to provide very specific process design criteria for the detailed engineering phase.

The demonstration plant also provides a very good training opportunity for plant operators in preparation of commercial production. Training and operating protocols that are being implemented for the demonstration plant can be easily transferred to commercial production. The good understanding of the process and response of the Matawinie ore as well as readily trained operators are expected to accelerate the ramp

up phase of the commercial plant.

In order to feed the demonstration plant, 5000 tonnes of ore were blasted a couple weeks ago from the West Zone Deposit. This material is scheduled to be sent to the plant shortly to ramp up production to full capacity. In the next two years, a total of 40, 000 tonnes are planned to be collected and shipped to the demonstration plant which is located 16 km by road from the extraction site.